Entrainment of slow oscillations of auditory thalamic neurons by repetitive sound stimuli.

نویسندگان

  • Lixia Gao
  • Xiankai Meng
  • Changquan Ye
  • Haitian Zhang
  • Chunhua Liu
  • Yang Dan
  • Mu-Ming Poo
  • Jufang He
  • Xiaohui Zhang
چکیده

Slow oscillations at frequencies <1 Hz manifest in many brain regions as discrete transitions between a depolarized up state and a hyperpolarized down state of the neuronal membrane potential. Although up and down states are known to differentially affect sensory-evoked responses, whether and how they are modulated by sensory stimuli are not well understood. In the present study, intracellular recording in anesthetized guinea pigs showed that membrane potentials of nonlemniscal auditory thalamic neurons exhibited spontaneous up/down transitions at random intervals in the range of 2-30 s, which could be entrained to a regular interval by repetitive sound stimuli. After termination of the entraining stimulation (ES), regular up/down transitions persisted for several cycles at the ES interval. Furthermore, the efficacy of weak sound stimuli in triggering the up-to-down transition was potentiated specifically at the ES interval for at least 10 min. Extracellular recordings in the auditory thalamus of unanesthetized guinea pigs also showed entrainment of slow oscillations by rhythmic sound stimuli during slow wave sleep. These results demonstrate a novel form of network plasticity, which could help to retain the information of stimulus interval on the order of seconds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

O23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines

The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...

متن کامل

Slow recovery from excitation of thalamic reticular nucleus neurons.

Responses to repeated auditory stimuli were examined in 103 neurons in the auditory region of the thalamic reticular nucleus (TRN) and in 20 medial geniculate (MGB) neurons of anesthetized rats. A further six TRN neurons were recorded from awake rats. The TRN neurons showed strong responses to the first trial and weak responses to the subsequent trials of repeated auditory stimuli and electrica...

متن کامل

Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity.

Layer IV circuitry in the rodent whisker-to-barrel pathway transforms the thalamic input signal spatially and temporally. Excitatory and inhibitory barrel neurons display response properties that differ from each other and from their common thalamic inputs. Here we further examine thalamocortical response transformations by characterizing the responses of individual thalamic barreloid neurons a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 18  شماره 

صفحات  -

تاریخ انتشار 2009